Action Recognition Based on Spatio-temporal Log-Euclidean Covariance Matrix

نویسندگان

  • Shilei Cheng
  • Jiangfeng Yang
  • Zheng Ma
  • Mei Xie
چکیده

In this paper, we handle the problem of human action recognition by combining covariance matrices as local spatio-temporal (ST) descriptors and local ST features extracted densely from action video. Unlike traditional methods that separately utilizing gradient-based feature and optical flow-based feature, we use covariance matrix to fuse the two types of feature. Since covariance matrices are Symmetric Positive Definite (SPD) matrices, which form a special type of Riemannian manifold. To measure the distance of SPDs while avoid computing the geodesic distance between them, covariance features are transformed to log-Euclidean covariance matrices (LECM) by matrix logarithm operation. After encoding LECM by Locality-constrained Linear Coding method, in order to provide position information to ST-LECM features, spatial pyramid is used to partition the video frames, and the average-pooling-on-absolute-value function is implemented over each sub-frames. Finally, non-linear support vector machine is used as classifier. Experiments on public human action datasets show that the proposed method obtains great improvements in recognition accuracy, in comparison to several state-ofthe-art methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Action Recognition under Log-Euclidean Riemannian Metric

This paper presents a new action recognition approach based on local spatio-temporal features. The main contributions of our approach are twofold. First, a new local spatio-temporal feature is proposed to represent the cuboids detected in video sequences. Specifically, the descriptor utilizes the covariance matrix to capture the self-correlation information of the low-level features within each...

متن کامل

Log-Euclidean bag of words for human action recognition

Representing videos by densely extracted local space-time features has recently become a popular approach for analysing actions. In this paper, we tackle the problem of categorising human actions by devising Bag of Words (BoW) models based on covariance matrices of spatio-temporal features, with the features formed from histograms of optical flow. Since covariance matrices form a special type o...

متن کامل

Video Covariance Matrix Logarithm for Human Action Recognition in Videos

In this paper, we propose a new local spatiotemporal descriptor for videos and we propose a new approach for action recognition in videos based on the introduced descriptor. The new descriptor is called the Video Covariance Matrix Logarithm (VCML). The VCML descriptor is based on a covariance matrix representation, and it models relationships between different low-level features, such as intens...

متن کامل

Online action recognition using covariance of shape and motion

We propose a novel approach for online action recognition. The action is represented in a low dimensional (15D) space using a covariance descriptor of shape and motion features – spatio-temporal coordinates and optical flow of pixels belonging to extracted silhouettes. We analyze the applicability of the descriptor for online scenarios where action classification is performed based on incomplet...

متن کامل

Evaluation of Tests for Separability and Symmetry of Spatio-temporal Covariance Function

In recent years, some investigations have been carried out to examine the assumptions like stationarity, symmetry and separability of spatio-temporal covariance function which would considerably simplify fitting a valid covariance model to the data by parametric and nonparametric methods. In this article, assuming a Gaussian random field, we consider the likelihood ratio separability test, a va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016